Shape Memory Biomaterials and Their Clinical Applications

Shape memory biomaterials are functional biomaterials that recover their original shape at the presence of the right external stimulus, such as temperature, magnetic field, electric field, light, and even moisture. The shape memory effect and/or superelastic property of shape memory biomaterials is particularly useful in shaping tissue in biomedical engineering. In the past 50 years, there were significant progress from shape memory alloys (SMAs) to shape memory polymers (SMPs) being used for medical applications, such as implantable medical devices in dentistry, orthopedics, interventional therapy, minimally invasive surgery tools and drug carriers, etc. This chapter will mainly introduce the mature SMAs and SMPs for biomedical application and propose the future research direction in the field of shape memory biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 71.68 Price includes VAT (France)

Softcover Book EUR 89.66 Price includes VAT (France)

Hardcover Book EUR 126.59 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Biodegradable Shape-Memory Polymers

Chapter © 2020

A Review on Additive Manufacturing of Shape-Memory Materials for Biomedical Applications

Article 23 January 2020

Redesigning the modern applied medical sciences and engineering with shape memory polymers

Article 17 February 2021

References

  1. Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–113. ArticleCASGoogle Scholar
  2. Xie T. Recent advances in polymer shape memory. Polymer. 2011;52:4985–5000. ArticleCASGoogle Scholar
  3. Nemat-Nasser S, Guo W. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech Mater. 2006;38:463–74. ArticleGoogle Scholar
  4. Jiang F, Liu Y, Yang H, Li L, Zheng Y. Effect of ageing treatment on the deformation behavior of Ti–50.9 at.% Ni. Acta Mater. 2009;57:4773–81. ArticleCASGoogle Scholar
  5. Zheng Y, Jiang F, Li L, Yang H, Liu Y. Effect of ageing treatment on the transformation behavior of Ti–50.9 at.% Ni alloy. Acta Mater. 2008;56:736–45. ArticleCASGoogle Scholar
  6. Duerig T, Pelton A, Stöckel D. An overview of nitinol medical applications. Mater Sci Eng A. 1999;273:149–60. ArticleGoogle Scholar
  7. Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc. 1971;82:1373–5. ArticleCASGoogle Scholar
  8. Torrisi L. The NiTi superelastic alloy application to the dentistry field. Biomed Mater Eng. 1999;9:39–47. CASGoogle Scholar
  9. Peters OA, Azevedo Bahia MG, Pereira ESJ. Contemporary root canal preparation: innovations in biomechanics. Dent Clin N Am. 2017;61:37–58. ArticleGoogle Scholar
  10. Cheung GS, Liu CS. A retrospective study of endodontic treatment outcome between nickel-titanium rotary and stainless steel hand filing techniques. J Endod. 2009;35:938–43. ArticleGoogle Scholar
  11. Shah KC, Chao D, Wu BM, Jensen OT. Shape-memory retained complete arch guided implant treatment using nitinol (Smileloc) abutments. Oral Maxillofac Surg Clin North Am. 2019;31:427–35. ArticleGoogle Scholar
  12. Shah KC, Linsley CS, Wu BM. Evaluation of a shape memory implant abutment system: An up to 6-month pilot clinical study. J Prosthet Dent. 2020;123:257–63. ArticleGoogle Scholar
  13. Willmott H, Al-Wattar Z, Halewood C, Dunning M, Amis A. Evaluation of different shape-memory staple configurations against crossed screws for first metatarsophalangeal joint arthrodesis: a biomechanical study. Foot Ankle Surg. 2018;24:259–63. ArticleCASGoogle Scholar
  14. Laravine J, Loubersac T, Gaisne E, Bellemère P. Evaluation of a shape memory staple (Qual®) in radial shortening osteotomy in Kienböck’s disease: a retrospective study of 30 cases. Hand Surg Rehabil. 2019;38:141–9. ArticleCASGoogle Scholar
  15. Schipper ON, Ellington JK. Nitinol compression staples in foot and ankle surgery. Orthop Clin North Am. 2019;50:391–9. ArticleGoogle Scholar
  16. Bansiddhi A, Sargeant T, Stupp SI, Dunand DC. Porous NiTi for bone implants: a review. Acta Biomater. 2008;4:773–82. ArticleCASGoogle Scholar
  17. Andani MT, Moghaddam NS, Haberland C, Dean D, Miller MJ, Elahinia M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014;10:4058–70. ArticleCASGoogle Scholar
  18. Bertheville B. Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute. Biomaterials. 2006;27:1246–50. ArticleCASGoogle Scholar
  19. Xu Y, Qi B, Fan X, Xu X, Lu S, Ding J. Four-corner arthrodesis concentrator of nickel-titanium memory alloy for carpal collapse: a report on 18 cases. J Hand Surg Am. 2012;37:2246–51. ArticleGoogle Scholar
  20. Li H, Mao Y, Qu X, Zhao X, Dai K, Zhu Z. Nickel-titanium shape-memory sawtooth-arm embracing clamp for complex femoral revision hip arthroplasty. J Arthroplast. 2016;31:850–6. ArticleGoogle Scholar
  21. Kraemer M, Mueller CW, Hermann M, Decker S, Springer A, Overmeyer L, Hurschler C, Pfeifer R. Design considerations for a novel shape-memory-plate osteosynthesis allowing for non-invasive alteration of bending stiffness. J Mech Behav Biomed Mater. 2017;75:558–66. ArticleGoogle Scholar
  22. Patel SM, Li J, Parikh SA. Design and comparison of large vessel stents: Balloon expandable and self-expanding peripheral arterial stents. Interv Cardiol Clin. 2016;5:365–80. Google Scholar
  23. Garcia L, Jaff MR, Metzger C, et al. Wire-interwoven nitinol stent outcome in the superficial femoral and proximal popliteal arteries: twelve-month results of the SUPERB trial. Circ Cardiovasc Interv. 2015;8:e000937. ArticleGoogle Scholar
  24. Zhou XC, Yang F, Gong XY, Zhao M, Zheng YF, Sun ZL. New nitinol endovascular stent-graft system for abdominal aortic aneurysm with finite element analysis and experimental verification. Rare Metals. 2019;38:495–502. ArticleCASGoogle Scholar
  25. Zhou X, Yang F, Gong X, Zhao M, Zheng Y, Sun Z. Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification. J Mater Sci Technol. 2019;35:2682–92. ArticleGoogle Scholar
  26. Irani S, Kozarek R. Esophageal stents: past, present, and future. Tech Gastrointest Endosc. 2010;12:178–90. ArticleGoogle Scholar
  27. Vakil N, Morris AI, Marcon N, et al. A prospective, randomized, controlled trial of covered expandable metal stents in the palliation of malignant esophageal obstruction at the gastroesophageal junction. Am J Gastroenterol. 2001;96:1791–6. ArticleCASGoogle Scholar
  28. Tobis JM, Abudayyeh I. New devices and technology in interventional cardiology. J Cardiol. 2015;65:5–16. ArticleGoogle Scholar
  29. Masura J, Gavora P, Podnar T. Long-term outcome of transcatheter secundum-type atrial septal defect closure using Amplatzer septal occluders. J Am Coll Cardiol. 2005;45:505–7. ArticleGoogle Scholar
  30. Alkhouli M, Sievert H, Rihal CS. Device embolization in structural heart interventions: incidence, outcomes, and retrieval techniques. JACC Cardiovasc Interv. 2019;12:113–26. ArticleGoogle Scholar
  31. Ahmed O, Sheikh S, Tran P, et al. Inferior vena cava filter evaluation and management for the diagnostic radiologist: a comprehensive review including inferior vena cava filter-related complications and PRESERVE trial filters. Can Assoc Radiol J. 2019;70:367–82. ArticleGoogle Scholar
  32. Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630–63. ArticleCASGoogle Scholar
  33. Habijan T, Haberland C, Meier H, Frenzel J, Wittsiepe J, Wuwer C, Greulich C, Schildhauer T, Köller M. The biocompatibility of dense and porous nickel–titanium produced by selective laser melting. Mater Sci Eng C. 2013;33:419–26. ArticleCASGoogle Scholar
  34. Zhang M, Yu Q, Liu Z, Zhang J, Tan G, Jiao D, Zhu W, Li S, Zhang Z, Yang R, Ritchie RO. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Sci Adv. 2020;6:eaba5581. ArticleCASGoogle Scholar
  35. Ramezannejad A, Xu W, Xiao W, Fox K, Liang D, Qian M. New insights into nickel-free superelastic titanium alloys for biomedical applications. Curr Opin Solid State Mater Sci. 2019;23:100783. ArticleCASGoogle Scholar
  36. Liang C, Rogers CA, Malafeew E. Investigation of shape memory polymers and their hybrid composites. J Intell Mater Syst Struct. 1997;8:380–6. ArticleCASGoogle Scholar
  37. Ware T, Simon D, Hearon K, Liu C, Shah S, Reeder J, et al. Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol Mater Eng. 2012;297:1193–202. ArticleCASGoogle Scholar
  38. Lu H, Yu K, Liu Y, Leng J. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler. Smart Mater Struct. 2010;19:065014. ArticleCASGoogle Scholar
  39. Gök MO, Bilir MZ, Gürcüm BH. Shape-memory applications in textile design. Procedia Soc Behav Sci. 2015;195:2160–9. ArticleGoogle Scholar
  40. Hu ZL, Zhu Y, Huang HH, Lu J. Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci. 2012;37:1720–63. ArticleCASGoogle Scholar
  41. Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. Chem. 2007;17:1543–58. CASGoogle Scholar
  42. Ji FL, Hu JL, Li TC, Wong YW. Morphology and shape memory effect of segmented polyurethanes. Part I: with crystalline reversible phase. Polymer. 2007;48:5133–45. ArticleCASGoogle Scholar
  43. Zhu Y, Hu J, Yeung K, Liu YQ, Liem H. Influence of ionic groups on the crystallization and melting behavior of segmented polyurethane ionomers. J Appl Polym Sci. 2006;100:4603–13. ArticleCASGoogle Scholar
  44. Rousseau IA, Qin HH, Mather PT. Tailored phase transitions via mixed-mesogen liquid crystalline polymers with silicon-based spacers. Macromolecules. 2005;38:4103–13. ArticleCASGoogle Scholar
  45. Ahn S-k, Deshmukh P, Kasi RM. Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures. Macromolecules. 2010;43:7330–40. ArticleCASGoogle Scholar
  46. Lee KM, Wang DH, Koerner H, Vaia RA, Tan L-S, Angew TJW. Enhancement of photogenerated mechanical force in azobenzene functionalized polyimides. Chem Int Ed. 2012;51:4117–21. ArticleCASGoogle Scholar
  47. Li J, Viveros JA, Wrue MH, Anthamatten M. Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv Mater. 2007;19:2851–5. ArticleCASGoogle Scholar
  48. Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature. 2005;434:879–82. ArticleCASGoogle Scholar
  49. Wu LB, Jin CL, Sun XY. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules. 2011;12:235–41. ArticleCASGoogle Scholar
  50. Inomata K, Nakagawa K, Fukuda C, Nakada Y, Sugimoto H, Nakanishi E. Shape memory behavior of poly(methyl methacrylate)-graft-poly(ethylene glycol) copolymers. Polymer. 2010;51:793–8. ArticleCASGoogle Scholar
  51. Gu X, Mather PT. Entanglement-based shape memory polyurethanes: synthesis and characterization. Polymer. 2012;53:5924–34. ArticleCASGoogle Scholar
  52. Yang R, Chen L, Ruan C, Zhong H-Y, Wang Y-Z. Chain folding in main-chain liquid crystalline polyesters: from π–π stacking toward shape memory. J Mater Chem C. 2014;2:6155–64. ArticleCASGoogle Scholar
  53. Petisco-Ferrero S, Fernández J, Fernández San Martín MM, Santamaría Ibarburu PA, Sarasua Oiz JR. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect. J Mech Behav Biomed Mater. 2016;61:541–53. ArticleCASGoogle Scholar
  54. Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L. Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab. 2016;132:97–108. ArticleCASGoogle Scholar
  55. Zhao Q, Qi HJ, Xie T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci. 2015;49-50:79–120. ArticleCASGoogle Scholar
  56. Wong YS, Venkatraman SS. Recovery as a measure of oriented crystalline structure in poly(L-lactide) used as shape memory polymer. Acta Mater. 2010;58:49–58. ArticleCASGoogle Scholar
  57. Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2002;34:5868–75. ArticleCASGoogle Scholar
  58. Krause S, Zander F, Bergmann G, Brandt H, Wertmer H, Finkelmann H. Nematic main-chain elastomers: coupling and orientational behavior. C R Chim. 2009;12:85–104. ArticleCASGoogle Scholar
  59. Broemmel F, Kramer D, Finkelmann H. Preparation of liquid crystalline elastomers. Adv Polym Sci. 2012;250:1–48. CASGoogle Scholar
  60. Chung T, Romo-Uribe A, Mather PT. Two-way reversible shape memory in a semicrystalline network. Macromolecules. 2008;41:184–92. ArticleCASGoogle Scholar
  61. Zhou J, Turner SA, Brosnan SM, Li Q, Carrillo JMY, Nykypanchuk D, et al. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules. 2014;47:1768–76. ArticleCASGoogle Scholar
  62. Li J, Rodgers WR, Xie T. Semi-crystalline two-way shape memory elastomer. Polymer. 2011;52:5320–5. ArticleCASGoogle Scholar
  63. Tobushi H, et al. Two-way bending properties of shape memory composite with SMA and SMP. Materials. 2009;2:1180–92. ArticleCASGoogle Scholar
  64. Ghosh P, Rao A, Srinivasa AR. Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater Des. 2013;44:164–71. ArticleCASGoogle Scholar
  65. Kang T-H, et al. Two-way actuation behavior of shape memory polymer/elastomer core/shell composites. Smart Mater Struct. 2012;21:035028. ArticleCASGoogle Scholar
  66. Wu Y, Hu J, Han J, Zhu Y, Huang H, Li J, et al. Two-way shape memory polymer with “switch–spring” composition by interpenetrating polymer network. J Mater Chem A. 2014;2:18816–22. ArticleCASGoogle Scholar
  67. Ratna D, Karger-Kocsis J. Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide). Polymer. 2011;52:1063–70. ArticleCASGoogle Scholar
  68. Zare M, Prabhakaran MP, Parvin N, Ramakrishna S. Thermally-induced two-way shape memory polymers: mechanisms, structures, and applications. Chem Eng J. 2019;374:706–20. ArticleCASGoogle Scholar
  69. Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proc Natl Acad Sci U S A. 2006;103:18043–180437. ArticleCASGoogle Scholar
  70. Xiao LP, Wei M, Zhan MQ, Zhang JJ, Xie H, Deng XY, et al. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym Chem. 2014;5:2231–41. ArticleCASGoogle Scholar
  71. Wang L, Yang X, Chen H, Gong T, Li W, Yang G, et al. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl Mater Interfaces. 2013;5:10520–8. ArticleCASGoogle Scholar
  72. Chatani S, Wang C, Podgórski M, Bowman CN. Triple shape memory materials incorporating two distinct polymer networks formed by selective Thiol-Michael addition reactions. Macromolecules. 2014;47:4949–54. ArticleCASGoogle Scholar
  73. Fu S, Zhang H, Zhao Y. Optically and thermally activated shape memory supramolecular liquid crystalline polymers. J Mater Chem C. 2016;4:4946–53. ArticleCASGoogle Scholar
  74. Chen S, Yuan H, Chen S, Yang H, Ge Z, Zhuo H, et al. Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J Mater Chem A. 2014;2:10169–81. ArticleCASGoogle Scholar
  75. Wang K, Jia Y-G, Zhao C, Zhu XX. Multiple and two-way reversible shape memory polymers: design strategies and applications. Prog Mater Sci. 2019;105:100572. ArticleCASGoogle Scholar
  76. Zheng N, Hou J, Xu Y, Fang Z, Zou W, Zhao Q, et al. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance. ACS Macro Lett. 2017;6:326–30. ArticleCASGoogle Scholar
  77. Samuel C, Barrau S, Lefebvre J-M, Raquez J-M, Dubois P. Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends. Macromolecules. 2014;47:6791–803. ArticleCASGoogle Scholar
  78. Shao Y, Lavigueur C, Zhu XX. Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups. Macromolecules. 2012;45:1924–30. ArticleCASGoogle Scholar
  79. Li X, Pan Y, Zheng Z, Ding X. A facile and general approach to recoverable high-strain multishape shape memory polymers. Macromol Rapid Commun. 2018;39:1700613. ArticleCASGoogle Scholar
  80. Yang X, Wang L, Wang W, Chen H, Yang G, Zhou S. Triple shape memory effect of starshaped polyurethane. ACS Appl Mater Interfaces. 2014;6:6545–54. ArticleCASGoogle Scholar
  81. Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464:267–70. ArticleCASGoogle Scholar
  82. Zhou HT, Mei ZK, Chen H, Chen SJ. Chemically-crosslinked zwitterionic polyurethanes with excellent thermally-induced multi-shape memory effect and moisture-induced shape memory effect. Polymer. 2018;148:119–26. ArticleCASGoogle Scholar
  83. Liu XF, Li H, Zeng QP, Zhang YY, Kang HM, Duan HN, Guo YP, Liu HZ. Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J Mater Chem A. 2015;3:11641–9. ArticleCASGoogle Scholar
  84. Xiao Y, Zhou S, Wang L, Gong T. Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl Mater Interfaces. 2010;2:3506–14. ArticleCASGoogle Scholar
  85. Cho JW, Kim JW, Jung YC, Goo NS. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun. 2005;26:412–6. ArticleCASGoogle Scholar
  86. Raja M, Ryu SH, Shanmugharaj AM. Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polym J. 2013;49:3492–500. ArticleCASGoogle Scholar
  87. Lu HB, Huang WM, Leng JS. Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Composites Part B. 2014;62:1–4. ArticleCASGoogle Scholar
  88. Wang W, Liu D, Liu Y, Leng J, Bhattacharyya D. Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol. 2015;106:20–4. ArticleCASGoogle Scholar
  89. Qi X, Dong P, Liu Z, Liu T, Fu Q. Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. Compos Sci Technol. 2016;125:38–46. ArticleCASGoogle Scholar
  90. Qi XD, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, Bai HW, Fu Q. Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol. 2017;139:8–16. ArticleCASGoogle Scholar
  91. Zhang DW, Liu YJ, Leng JS. Magnetic field activation of thermoresponsive shape-memory polymer with embedded micron sized Ni powder. Adv Mater Res. 2010;123–125:995–8. ArticleCASGoogle Scholar
  92. Zheng XT, Zhou SB, Xiao Y, Yu XZ, Li XH, Wu PZ. Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf B: Biointerfaces. 2009;71:67–72. ArticleCASGoogle Scholar
  93. Bai S, Zou H, Dietsch H, Simon YC, Weder C. Functional Iron oxide nanoparticles as reversible crosslinks for magnetically addressable shape-memory polymers. Macromol Chem Phys. 2014;215:398–404. ArticleCASGoogle Scholar
  94. Du WN, Jin Y, Lai SQ, Shi LJ, Fan WH, Pan JZ. Near-infrared light triggered shape memory and self-healable polyurethane/functionalized graphene oxide composites containing diselenide bonds. Polymer. 2018;158:120–9. ArticleCASGoogle Scholar
  95. Du W, Jin Y, Lai S, Shi L, Shen Y, Yang H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites Part A. 2020;128:105686. ArticleCASGoogle Scholar
  96. Zhang HJ, Xia HS, Zhao Y. Light-controlled complex deformation and motion of shape-memory polymers using a temperature gradient. ACS Macro Lett. 2014;3:940–3. ArticleCASGoogle Scholar
  97. Chen Y, Zhao X, Luo C, Shao Y, Yang MB, Yin B. A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance. Composites Part A. 2020;135:105931. ArticleCASGoogle Scholar
  98. Zhou L, Liu Q, Lv X, Gao L, Fang S, Yu H. Photoinduced triple shape memory polyurethane enabled by doping with azobenzene and GO. J Mater Chem C. 2016;4:9993–7. ArticleCASGoogle Scholar
  99. Punetha VD, Ha Y-M, Kim Y-O, Jung YC, Cho JW. Interaction of photothermal graphene networks with polymer chains and laser-driven photo-actuation behavior of shape memory polyurethane/epoxy/epoxy-functionalized graphene oxide nanocomposites. Polymer. 2019;181:121791. ArticleCASGoogle Scholar
  100. Leonardi AB, Puig J, Antonacci J, Arenas GF, Zucchi IA, Hoppe CE, Reven L, Zhu L, Toader V, Williams RJJ. Remote activation by green-light irradiation of shape memory epoxies containing gold nanoparticles. Eur Polym J. 2015;71:451–60. ArticleCASGoogle Scholar
  101. Li ST, Jin XZ, Shao YW, Qi XD, Yang JH, Wang Y. Gold nanoparticle/reduced graphene oxide hybrids for fast light-actuated shape memory polymers with enhanced photothermal conversion and mechanical stiffness. Eur Polym J. 2019;116:302–10. ArticleCASGoogle Scholar
  102. Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett. 2005;86:114105. ArticleCASGoogle Scholar
  103. Liu Y, Li Y, Chen HM, Yang G, Zheng XT, Zhou SB. Water-induced shape-memory poly(d,l-lactide)/microcrystalline cellulose composites. Carbohydr Polym. 2014;104:101–8. ArticleCASGoogle Scholar
  104. Song LF, Li YQ, Xiong ZQ, Pan LL, Luo QY, Xu X, Lu SR. Water-induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr Polym. 2018;179:110–7. ArticleCASGoogle Scholar
  105. Liu Y, Li Y, Yang G, Zheng X, Zhou S. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces. 2015;7:4118–26. ArticleCASGoogle Scholar
  106. Dagnon KL, Way AE, Carson SO, Silva J, Maia J, Rowan SJ. Controlling the rate of water-induced switching in mechanically dynamic cellulose nanocrystal composites. Macromolecules. 2013;46:8203–12. ArticleCASGoogle Scholar
  107. Butchosa N, Zhou Q. Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose. 2014;21:4349–58. ArticleCASGoogle Scholar
  108. Lin C, Zhang L, Liu Y, Liu L, Leng J. 4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: a preliminary study. Sci China Technol Sci. 2020;63:578–88. ArticleGoogle Scholar
  109. Huang WM, Yang B, Liu N, Phee SJ. Water-responsive programmable shape memory polymer devices. International Conference on Smart Materials and Nanotechnology in Engineering; 2007. Google Scholar
  110. Sun L, Huang WM. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter. 2010;6 Google Scholar
  111. Xue L, Dai S, Li Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials. 2010;31:8132–40. ArticleCASGoogle Scholar
  112. Venkatraman SS, Tan LP, Joso JF, Boey YC, Wang X. Biodegradable stents with elastic memory. Biomaterials. 2006;27:1573–8. ArticleCASGoogle Scholar
  113. Kim JH, Kang TJ, Yu WR. Simulation of mechanical behavior of temperature-responsive braided stents made of shape memory polyurethanes. J Biomech. 2010;43:632–43. ArticleGoogle Scholar
  114. Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg Med. 2002;30:1–11. ArticleGoogle Scholar
  115. Zhang Y, Gao H, Wang H, Xu Z, Chen X, Liu B, et al. Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries. Adv Funct Mater. 2018;28 Google Scholar
  116. Kashyap D, Kishore Kumar P, Kanagaraj S. 4D printed porous radiopaque shape memory polyurethane for endovascular embolization. Addit Manuf. 2018;24:687–95. CASGoogle Scholar
  117. Shah Idil A, Donaldson N. The use of tungsten as a chronically implanted material. J Neural Eng. 2018;15:021006. ArticleCASGoogle Scholar
  118. Aninwene GE 2nd, Stout D, Yang Z, Webster TJ. Nano-BaSO4: a novel antimicrobial additive to pellethane. Int J Nanomedicine. 2013;8:1197–205. Google Scholar
  119. Song L, Sun L, Jiang N, Gan Z. Structural control and hemostatic properties of porous microspheres fabricated by hydroxyapatite- graft -poly(DL-lactide) nanocomposites. Compos Sci Technol. 2016;134:234–41. ArticleCASGoogle Scholar
  120. Kashyap D, Gaur SS, Kanagaraj S. Development of hybrid shape memory polyurethane composites for endovascular applications. Mater Today Commun. 2020;22 Google Scholar
  121. Metcalfe A, Desfaits A-C, Salazkin I, Yahia LH, Sokolowski WM, Raymond J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials. 2003;24:491–7. ArticleCASGoogle Scholar
  122. Small W, Buckley PR, Wilson TS, Benett WJ, Hartman J, Saloner D, et al. Shape memory polymer stent with expandable foam: a new concept for endovascular embolization of fusiform aneurysms. IEEE Trans Biomed Eng. 2007;54:1157–60. ArticleGoogle Scholar
  123. Kunkel R, Laurence D, Wang J, Robinson D, Scherrer J, Wu Y, et al. Synthesis and characterization of bio-compatible shape memory polymers with potential applications to endovascular embolization of intracranial aneurysms. J Mech Behav Biomed Mater. 2018;88:422–30. ArticleCASGoogle Scholar
  124. Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater. 2014;10:4597–605. ArticleCASGoogle Scholar
  125. Liu X, Zhao K, Gong T, Song J, Bao C, Luo E, et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules. 2014;15:1019–30. ArticleCASGoogle Scholar
  126. Baker RM, Tseng LF, Iannolo MT, Oest ME, Henderson JH. Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse femoral segmental defect study. Biomaterials. 2016;76:388–98. ArticleCASGoogle Scholar
  127. Bao M, Lou X, Zhou Q, Dong W, Yuan H, Zhang Y. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces. 2014;6:2611–21. ArticleCASGoogle Scholar
  128. Chen C, Hu J, Huang H, Zhu Y, Qin T. Design of a Smart Nerve Conduit Based on a shape-memory polymer. Adv Mater Technol. 2016;1:1600015. ArticleCASGoogle Scholar
  129. Kai D, Tan MJ, Prabhakaran MP, Chan BQY, Liow SS, Ramakrishna S, et al. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids Surf B Biointerfaces. 2016;148:557–65. ArticleCASGoogle Scholar
  130. Chan BQY, Liow SS, Loh XJ. Organic–inorganic shape memory thermoplastic polyurethane based on polycaprolactone and polydimethylsiloxane. RSC Adv. 2016;6:34946–54. ArticleCASGoogle Scholar
  131. Castillo-Cruz O, Aviles F, Vargas-Coronado R, Cauich-Rodriguez JV, Chan-Chan LH, Sessini V, et al. Mechanical properties of l-lysine based segmented polyurethane vascular grafts and their shape memory potential. Mater Sci Eng C Mater Biol Appl. 2019;102:887–95. ArticleCASGoogle Scholar
  132. Chan-Chan LH, Tkaczyk C, Vargas-Coronado RF, Cervantes-Uc JM, Tabrizian M, Cauich-Rodriguez JV. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders. J Mater Sci Mater Med. 2013;24:1733–44. ArticleCASGoogle Scholar
  133. Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. 2002;296:1673–6. ArticleGoogle Scholar
  134. Bodaghi M, Damanpack AR, Liao WH. Adaptive metamaterials by functionally graded 4D printing. Mater Des. 2017;135:26–36. ArticleCASGoogle Scholar
  135. Bai Y, Jiang C, Wang Q, Wang T. A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Carbohydr Polym. 2013;96:522–7. ArticleCASGoogle Scholar
  136. Joo YS, Cha JR, Gong MS. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends. Mater Sci Eng C Mater Biol Appl. 2018;91:426–35. ArticleCASGoogle Scholar
  137. Jing X, Mi HY, Huang HX, Turng LS. Shape memory thermoplastic polyurethane (TPU)/poly(epsilon-caprolactone) (PCL) blends as self-knotting sutures. J Mech Behav Biomed Mater. 2016;64:94–103. ArticleCASGoogle Scholar
  138. Wischke C, Neffe AT, Steuer S, Lendlein A. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release. 2009;138:243–50. ArticleCASGoogle Scholar
  139. Alfonso F, Perez-Vizcayno MJ, Ruiz M, Suarez A, Cazares M, Hernandez R, et al. Coronary aneurysms after drug-eluting stent implantation: clinical, angiographic, and intravascular ultrasound findings. J Am Coll Cardiol. 2009;53:2053–60. ArticleCASGoogle Scholar
  140. Chen MC, Chang Y, Liu CT, Lai WY, Peng SF, Hung YW, et al. The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials. 2009;30:79–88. ArticleCASGoogle Scholar
  141. Musial-Kulik M, Kasperczyk J, Smola A, Dobrzynski P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int J Pharm. 2014;465:291–8. ArticleCASGoogle Scholar
  142. Yan K, Xu F, Li S, Li Y, Chen Y, Wang D. Ice-templating of chitosan/agarose porous composite hydrogel with adjustable water-sensitive shape memory property and multi-staged degradation performance. Colloids Surf B Biointerfaces. 2020;190:110907. ArticleCASGoogle Scholar
  143. Lendlein A, Steuer S, Tuleweit A. Systems for releasing active ingredients based on biodegradable or biocompatible polymers with a shape memory effect: International Publication; 2004. p. 006885. Google Scholar
  144. Landsman TL, Touchet T, Hasan SM, Smith C, Russell B, Rivera J, et al. A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomater. 2017;47:91–9. ArticleCASGoogle Scholar
  145. Fang Y, Xu Y, Wang Z, Zhou W, Yan L, Fan X, et al. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem Eng J. 2020;388 Google Scholar
  146. Tan L, Hu J, Huang H, Han J, Hu H. Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int J Biol Macromol. 2015;79:469–76. ArticleCASGoogle Scholar
  147. Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K. Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater. 2008;18:2428–35. ArticleCASGoogle Scholar
  148. Zhao W, Zhang F, Leng J, Liu Y. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Compos Sci Technol. 2019;184 Google Scholar
  149. Shadduck JH. Implants for treating ocular hypertension, methods of use and methods of fabrication, vol. 0193095: United States Patent Application Publication; 2004. p. A1. Google Scholar
  150. Mills DM, Meyer DR. Acquired nasolacrimal duct obstruction. Otolaryngol Clin N Am. 2006;39:979–99. ArticleGoogle Scholar
  151. Park JY, Lee JB, Shin WB, Kang ML, Shin YC, Son DH, et al. Nasolacrimal stent with shape memory as an advanced alternative to silicone products. Acta Biomater. 2020;101:273–84. ArticleCASGoogle Scholar
  152. Jung YC, Cho JW. Application of shape memory polyurethane in orthodontic. J Mater Sci Mater Med. 2010;21:2881–6. ArticleCASGoogle Scholar
  153. Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices. 2010;7:357–79. ArticleCASGoogle Scholar
  154. Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2016;66:159–82. ArticleCASGoogle Scholar
  155. Paonessa S, Barbani N, Rocchietti EC, Giachino C, Cristallini C. Design and development of a hybrid bioartificial water-induced shape memory polymeric material as an integral component for the anastomosis of human hollow organs. Mater Sci Eng C Mater Biol Appl. 2017;75:1427–34. ArticleCASGoogle Scholar
  156. Fisher JG, Sparks EA, Khan FA, Dionigi B, Wu H, Brazzo J 3rd, et al. Extraluminal distraction enterogenesis using shape-memory polymer. J Pediatr Surg. 2015;50:938–42. ArticleGoogle Scholar
  157. Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ. A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng. 2007;54:1722–4. ArticleGoogle Scholar
  158. Shandas R, Yakacki Christopher M, Nair Devatha P, Gall K, Lyons M. Shape memory polymer-based transcervical device for permanent or temporary sterilization, vol. 115208: International Publication; 2007. p. A2. Google Scholar
  159. Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, et al. Shaping tissue with shape memory materials. Adv Drug Deliv Rev. 2013;65:515–35. ArticleCASGoogle Scholar
  160. Miao S, Castro N, Nowicki M, Xia L, Cui H, Zhou X, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today (Kidlington). 2017;20:577–91. ArticleCASGoogle Scholar
  161. Ogawa Y, Ando D, Sutou Y, Koike J. A lightweight shape-memory magnesium alloy. Science. 2016;353:368–70. ArticleCASGoogle Scholar
  162. Liu J, Lin Y, Bian D, Wang M, Lin Z, Chu X, Li W, Liu Y, Shen Z, Liu Y, Tong Y, Xu Z, Zhang Y, Zheng Y. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomater. 2019;98:50–66. ArticleCASGoogle Scholar
  163. Ma P, Hristova-Bogaerds D, Goossens J, Spoelstra A, Zhang Y, Lemstra P. Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J. 2012;48:146–54. ArticleCASGoogle Scholar
  164. Xiao Y, Qu M, Shi X. Studies on shape memory effect of polynorbornene/poly (lactic acid) blends. Acta Polym Sin. 2018;3:402–9. Google Scholar
  165. Espinha A, Guidetti G, Serrano MC, Frka-Petesic B, Dumanli AG, Hamad WY, Blanco A, López C, Vignolini S. Shape memory cellulose-based photonic reflectors. ACS Appl Mater Inter. 2016;8:31935–40. ArticleCASGoogle Scholar
  166. Fan K, Huang W, Wang C, Ding Z, Zhao Y, Purnawali H, Liew K, Zheng L. Water-responsive shape memory hybrid: design concept and demonstration. Express Polym Lett. 2011;5:409–16. ArticleCASGoogle Scholar
  167. Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H. Cooling−/water-responsive shape memory hybrids. Compos Sci Technol. 2012;72:1178–82. ArticleCASGoogle Scholar
  168. Shayan M, Chun Y. An overview of thin film nitinol endovascular devices. Acta Biomater. 2015;21:20–34. ArticleCASGoogle Scholar
  169. Chun Y, Lin PY, Chang HY, Emmons MC, Mohanchandra K, Levi DS, Carman GP.Modeling and experimental analysis of the hyperelastic thin film nitinol. J Intell Mater Syst Struct. 2011;22:2045–51. Google Scholar
  170. Alwade FH, Ismail IJ, Ibrahim FJ. Zirconia in dental and other biomedical applications: An overview. Health Sci J. 2019;8:30–7. Google Scholar

Author information

Authors and Affiliations

  1. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China Yufeng Zheng
  2. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China Jianing Liu
  3. Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China Xili Lu & Yibo Li
  1. Yufeng Zheng